515 Episodio

  1. SPIRAL: Self-Play for Reasoning Through Zero-Sum Games

    Pubblicato: 11/07/2025
  2. Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence

    Pubblicato: 11/07/2025
  3. Aligning Learning and Endogenous Decision-Making

    Pubblicato: 11/07/2025
  4. Reliable Statistical Inference with Synthetic Data from Large Language Models

    Pubblicato: 11/07/2025
  5. Multi-Turn Reinforcement Learning from Human Preference Feedback

    Pubblicato: 10/07/2025
  6. Provably Learning from Language Feedback

    Pubblicato: 09/07/2025
  7. Markets with Heterogeneous Agents: Dynamics and Survival of Bayesian vs. No-Regret Learners

    Pubblicato: 05/07/2025
  8. Why Neural Network Can Discover Symbolic Structures with Gradient-based Training: An Algebraic and Geometric Foundation

    Pubblicato: 05/07/2025
  9. Causal Abstraction with Lossy Representations

    Pubblicato: 04/07/2025
  10. The Winner's Curse in Data-Driven Decisions

    Pubblicato: 04/07/2025
  11. Embodied AI Agents: Modeling the World

    Pubblicato: 04/07/2025
  12. Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence

    Pubblicato: 04/07/2025
  13. What Has a Foundation Model Found? Inductive Bias Reveals World Models

    Pubblicato: 04/07/2025
  14. Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond

    Pubblicato: 03/07/2025
  15. Learning to Explore: An In-Context Learning Approach for Pure Exploration

    Pubblicato: 03/07/2025
  16. Human-AI Matching: The Limits of Algorithmic Search

    Pubblicato: 25/06/2025
  17. Uncertainty Quantification Needs Reassessment for Large-language Model Agents

    Pubblicato: 25/06/2025
  18. Bayesian Meta-Reasoning for Robust LLM Generalization

    Pubblicato: 25/06/2025
  19. General Intelligence Requires Reward-based Pretraining

    Pubblicato: 25/06/2025
  20. Deep Learning is Not So Mysterious or Different

    Pubblicato: 25/06/2025

8 / 26

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site