Best AI papers explained
A podcast by Enoch H. Kang
520 Episodio
-
Human-AI Matching: The Limits of Algorithmic Search
Pubblicato: 25/06/2025 -
Uncertainty Quantification Needs Reassessment for Large-language Model Agents
Pubblicato: 25/06/2025 -
Bayesian Meta-Reasoning for Robust LLM Generalization
Pubblicato: 25/06/2025 -
General Intelligence Requires Reward-based Pretraining
Pubblicato: 25/06/2025 -
Deep Learning is Not So Mysterious or Different
Pubblicato: 25/06/2025 -
AI Agents Need Authenticated Delegation
Pubblicato: 25/06/2025 -
Probabilistic Modelling is Sufficient for Causal Inference
Pubblicato: 25/06/2025 -
Not All Explanations for Deep Learning Phenomena Are Equally Valuable
Pubblicato: 25/06/2025 -
e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs
Pubblicato: 17/06/2025 -
Extrapolation by Association: Length Generalization Transfer in Transformers
Pubblicato: 17/06/2025 -
Uncovering Causal Hierarchies in Language Model Capabilities
Pubblicato: 17/06/2025 -
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers
Pubblicato: 17/06/2025 -
Improving Treatment Effect Estimation with LLM-Based Data Augmentation
Pubblicato: 17/06/2025 -
LLM Numerical Prediction Without Auto-Regression
Pubblicato: 17/06/2025 -
Self-Adapting Language Models
Pubblicato: 17/06/2025 -
Why in-context learning models are good few-shot learners?
Pubblicato: 17/06/2025 -
Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina∗
Pubblicato: 14/06/2025 -
The Logic of Machines: The AI Reasoning Debate
Pubblicato: 12/06/2025 -
Layer by Layer: Uncovering Hidden Representations in Language Models
Pubblicato: 12/06/2025 -
Causal Attribution Analysis for Continuous Outcomes
Pubblicato: 12/06/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
