Best AI papers explained
A podcast by Enoch H. Kang
515 Episodio
-
Zuckerberg's AI Vision Analyzed
Pubblicato: 26/07/2025 -
Inside Claude: Scaling, Agency, and Interpretability
Pubblicato: 26/07/2025 -
Personalized language modeling from personalized human feedback
Pubblicato: 26/07/2025 -
Position: Empowering Time Series Reasoning with Multimodal LLMs
Pubblicato: 25/07/2025 -
An empirical risk minimization approach for offline inverse RL and Dynamic Discrete Choice models
Pubblicato: 22/07/2025 -
Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
Pubblicato: 22/07/2025 -
The Invisible Leash: Why RLVR May Not Escape Its Origin
Pubblicato: 20/07/2025 -
Language Model Personalization via Reward Factorization
Pubblicato: 20/07/2025 -
Train for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffusions
Pubblicato: 18/07/2025 -
Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
Pubblicato: 17/07/2025 -
Soft Best-of-n Sampling for Model Alignment
Pubblicato: 16/07/2025 -
On Temporal Credit Assignment and Data-Efficient Reinforcement Learning
Pubblicato: 15/07/2025 -
Bradley–Terry and Multi-Objective Reward Modeling Are Complementary
Pubblicato: 15/07/2025 -
Probing Foundation Models for World Models
Pubblicato: 15/07/2025 -
GenAI-Powered Statistical Inference (with Unstructured Data)
Pubblicato: 14/07/2025 -
Interpretable Reward Modeling with Active Concept Bottlenecks
Pubblicato: 14/07/2025 -
PrefillOnly: An Inference Engine for Prefill-only Workloads in Large Language Model Applications
Pubblicato: 14/07/2025 -
A Collectivist, Economic Perspective on AI
Pubblicato: 14/07/2025 -
Textual Bayes: Quantifying Uncertainty in LLM-Based Systems
Pubblicato: 12/07/2025 -
The Winner's Curse in Data-Driven Decisions
Pubblicato: 11/07/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
