Linear Digressions
A podcast by Ben Jaffe and Katie Malone
Categorie:
289 Episodio
-
Interview with Joel Grus
Pubblicato: 10/6/2019 -
Re - Release: Factorization Machines
Pubblicato: 3/6/2019 -
Re-release: Auto-generating websites with deep learning
Pubblicato: 27/5/2019 -
Advice to those trying to get a first job in data science
Pubblicato: 19/5/2019 -
Re - Release: Machine Learning Technical Debt
Pubblicato: 12/5/2019 -
Estimating Software Projects, and Why It's Hard
Pubblicato: 5/5/2019 -
The Black Hole Algorithm
Pubblicato: 29/4/2019 -
Structure in AI
Pubblicato: 21/4/2019 -
The Great Data Science Specialist vs. Generalist Debate
Pubblicato: 15/4/2019 -
Google X, and Taking Risks the Smart Way
Pubblicato: 8/4/2019 -
Statistical Significance in Hypothesis Testing
Pubblicato: 1/4/2019 -
The Language Model Too Dangerous to Release
Pubblicato: 25/3/2019 -
The cathedral and the bazaar
Pubblicato: 17/3/2019 -
AlphaStar
Pubblicato: 11/3/2019 -
Are machine learning engineers the new data scientists?
Pubblicato: 4/3/2019 -
Interview with Alex Radovic, particle physicist turned machine learning researcher
Pubblicato: 25/2/2019 -
K Nearest Neighbors
Pubblicato: 17/2/2019 -
Not every deep learning paper is great. Is that a problem?
Pubblicato: 11/2/2019 -
The Assumptions of Ordinary Least Squares
Pubblicato: 3/2/2019 -
Quantile Regression
Pubblicato: 28/1/2019
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.