Linear Digressions
A podcast by Ben Jaffe and Katie Malone

Categorie:
289 Episodio
-
Interview with Joel Grus
Pubblicato: 10/06/2019 -
Re - Release: Factorization Machines
Pubblicato: 03/06/2019 -
Re-release: Auto-generating websites with deep learning
Pubblicato: 27/05/2019 -
Advice to those trying to get a first job in data science
Pubblicato: 19/05/2019 -
Re - Release: Machine Learning Technical Debt
Pubblicato: 12/05/2019 -
Estimating Software Projects, and Why It's Hard
Pubblicato: 05/05/2019 -
The Black Hole Algorithm
Pubblicato: 29/04/2019 -
Structure in AI
Pubblicato: 21/04/2019 -
The Great Data Science Specialist vs. Generalist Debate
Pubblicato: 15/04/2019 -
Google X, and Taking Risks the Smart Way
Pubblicato: 08/04/2019 -
Statistical Significance in Hypothesis Testing
Pubblicato: 01/04/2019 -
The Language Model Too Dangerous to Release
Pubblicato: 25/03/2019 -
The cathedral and the bazaar
Pubblicato: 17/03/2019 -
AlphaStar
Pubblicato: 11/03/2019 -
Are machine learning engineers the new data scientists?
Pubblicato: 04/03/2019 -
Interview with Alex Radovic, particle physicist turned machine learning researcher
Pubblicato: 25/02/2019 -
K Nearest Neighbors
Pubblicato: 17/02/2019 -
Not every deep learning paper is great. Is that a problem?
Pubblicato: 11/02/2019 -
The Assumptions of Ordinary Least Squares
Pubblicato: 03/02/2019 -
Quantile Regression
Pubblicato: 28/01/2019
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.