Linear Digressions

A podcast by Ben Jaffe and Katie Malone

Categorie:

289 Episodio

  1. The Care and Feeding of Data Scientists: Recruiting and Hiring Data Scientists

    Pubblicato: 4/11/2019
  2. The Care and Feeding of Data Scientists: Becoming a Data Science Manager

    Pubblicato: 28/10/2019
  3. Kalman Runners

    Pubblicato: 13/10/2019
  4. What's *really* so hard about feature engineering?

    Pubblicato: 6/10/2019
  5. Data storage for analytics: stars and snowflakes

    Pubblicato: 30/9/2019
  6. Data storage: transactions vs. analytics

    Pubblicato: 23/9/2019
  7. GROVER: an algorithm for making, and detecting, fake news

    Pubblicato: 16/9/2019
  8. Data science teams as innovation initiatives

    Pubblicato: 9/9/2019
  9. Can Fancy Running Shoes Cause You To Run Faster?

    Pubblicato: 1/9/2019
  10. Organizational Models for Data Scientists

    Pubblicato: 25/8/2019
  11. Data Shapley

    Pubblicato: 19/8/2019
  12. A Technical Deep Dive on Stanley, the First Self-Driving Car

    Pubblicato: 12/8/2019
  13. An Introduction to Stanley, the First Self-Driving Car

    Pubblicato: 5/8/2019
  14. Putting the "science" in data science: the scientific method, the null hypothesis, and p-hacking

    Pubblicato: 29/7/2019
  15. Interleaving

    Pubblicato: 22/7/2019
  16. Federated Learning

    Pubblicato: 14/7/2019
  17. Endogenous Variables and Measuring Protest Effectiveness

    Pubblicato: 7/7/2019
  18. Deepfakes

    Pubblicato: 1/7/2019
  19. Revisiting Biased Word Embeddings

    Pubblicato: 24/6/2019
  20. Attention in Neural Nets

    Pubblicato: 17/6/2019

3 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site