550 Episodio

  1. Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing

    Pubblicato: 27/11/2025
  2. Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs

    Pubblicato: 27/11/2025
  3. Ilya Sutskever – We're moving from the age of scaling to the age of research

    Pubblicato: 26/11/2025
  4. Cognitive Foundations for Reasoning and Their Manifestation in LLMs

    Pubblicato: 26/11/2025
  5. Natural emergent misalignment from reward hacking in production RL

    Pubblicato: 25/11/2025
  6. Evolution Strategies at the Hyperscale

    Pubblicato: 25/11/2025
  7. The Path Not Taken: RLVR Provably Learns Off the Principals

    Pubblicato: 23/11/2025
  8. Back to Basics: Let Denoising Generative Models Denoise

    Pubblicato: 23/11/2025
  9. LLM Prompt Duel Optimizer: Efficient Label-Free Prompt Optimization

    Pubblicato: 22/11/2025
  10. Black-Box On-Policy Distillation of Large Language Models

    Pubblicato: 20/11/2025
  11. Solving a million step LLM task with zero errors

    Pubblicato: 20/11/2025
  12. Not All Thoughts Matter: Selective Attention for Efficient Reasoning

    Pubblicato: 19/11/2025
  13. Sample-Efficient Parametric Learning from Natural Language

    Pubblicato: 19/11/2025
  14. Bayesian Optimization in Language space: An Eval-Efficient AI Self-Improvement Framework

    Pubblicato: 18/11/2025
  15. Context Engineering: Sessions, Memory

    Pubblicato: 16/11/2025
  16. The Era of Agentic Organization: Learning to Organize with Language Models

    Pubblicato: 15/11/2025
  17. Understanding neural networks through sparse circuits

    Pubblicato: 14/11/2025
  18. Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning

    Pubblicato: 14/11/2025
  19. Multi-Agent Evolve: LLM Self-Improvement Through Co-Evolution

    Pubblicato: 14/11/2025
  20. LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics

    Pubblicato: 14/11/2025

1 / 28

Cut through the noise. We curate and break down the most important AI papers so you don’t have to.

Visit the podcast's native language site