Best AI papers explained
A podcast by Enoch H. Kang
550 Episodio
-
PREFDISCO: Evaluating Proactive Personalization through Interactive Preference Discovery
Pubblicato: 12/11/2025 -
Reusing pre-training data at test time is a compute multiplier
Pubblicato: 10/11/2025 -
Scaling Agent Learning via Experience Synthesis
Pubblicato: 09/11/2025 -
Continuous Autoregressive Language Models
Pubblicato: 08/11/2025 -
Toward a Theory of Agents as Tool-Use Decision-Makers
Pubblicato: 07/11/2025 -
Nested Learning: The Illusion of Deep Learning Architectures
Pubblicato: 05/11/2025 -
GST-UNet: A Neural Framework for Spatiotemporal Causal Inference with Time-Varying Confounding
Pubblicato: 05/11/2025 -
Beyond a million tokens: benchmarking and enhancing long-term memory in llms
Pubblicato: 04/11/2025 -
Agentic Economic Modeling
Pubblicato: 03/11/2025 -
Emergent Introspective Awareness in Large Language Models
Pubblicato: 03/11/2025 -
Can Large reasoning models self-train?
Pubblicato: 01/11/2025 -
ALITA-G: Self-Evolving Generative Agent for Agent Generation
Pubblicato: 01/11/2025 -
Self-improving LLM agents at test-time
Pubblicato: 30/10/2025 -
Offline RL by Reward-Weighted Fine-Tuning for Conversation Optimization
Pubblicato: 30/10/2025 -
Language models are injective and hence invertible
Pubblicato: 30/10/2025 -
ReasoningBank: Scaling Agent Self-Evolving with Reasoning Memory
Pubblicato: 29/10/2025 -
RLAD: Training LLMs to Discover Abstractions
Pubblicato: 29/10/2025 -
How to Train Your Advisor: Steering Black-Box LLMs with ADVISOR MODELS
Pubblicato: 29/10/2025 -
Self-improving LLM agents at Test-Time
Pubblicato: 27/10/2025 -
KL-Regularized Reinforcement Learning is designed to Mode Collapse
Pubblicato: 27/10/2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
