Practical AI: Machine Learning, Data Science

A podcast by Changelog Media

Categorie:

275 Episodio

  1. Apache TVM and OctoML

    Pubblicato: 18/05/2021
  2. 25 years of speech technology innovation

    Pubblicato: 11/05/2021
  3. Generating "hunches" using smart home data 🏠

    Pubblicato: 04/05/2021
  4. Mapping the world

    Pubblicato: 27/04/2021
  5. Data science for intuitive user experiences

    Pubblicato: 20/04/2021
  6. Going full bore with Graphcore!

    Pubblicato: 13/04/2021
  7. Next-gen voice assistants

    Pubblicato: 06/04/2021
  8. Women in Data Science (WiDS)

    Pubblicato: 30/03/2021
  9. Recommender systems and high-frequency trading

    Pubblicato: 23/03/2021
  10. Deep learning technology for drug discovery

    Pubblicato: 09/03/2021
  11. Green AI 🌲

    Pubblicato: 02/03/2021
  12. Low code, no code, accelerated code, & failing code

    Pubblicato: 23/02/2021
  13. The AI doc will see you now

    Pubblicato: 16/02/2021
  14. Cooking up synthetic data with Gretel

    Pubblicato: 02/02/2021
  15. The nose knows

    Pubblicato: 26/01/2021
  16. Accelerating ML innovation at MLCommons

    Pubblicato: 19/01/2021
  17. The $1 trillion dollar ML model 💵

    Pubblicato: 11/01/2021
  18. Getting in the Flow with Snorkel AI

    Pubblicato: 21/12/2020
  19. Engaging with governments on AI for good

    Pubblicato: 14/12/2020
  20. From research to product at Azure AI

    Pubblicato: 07/12/2020

8 / 14

Making artificial intelligence practical, productive & accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, GANs, MLOps, AIOps, LLMs & more). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!

Visit the podcast's native language site