165 Episodio

  1. BI 125 Doris Tsao, Tony Zador, Blake Richards: NAISys

    Pubblicato: 19/01/2022
  2. BI 124 Peter Robin Hiesinger: The Self-Assembling Brain

    Pubblicato: 05/01/2022
  3. BI 123 Irina Rish: Continual Learning

    Pubblicato: 26/12/2021
  4. BI 122 Kohitij Kar: Visual Intelligence

    Pubblicato: 12/12/2021
  5. BI 121 Mac Shine: Systems Neurobiology

    Pubblicato: 02/12/2021
  6. BI 120 James Fitzgerald, Andrew Saxe, Weinan Sun: Optimizing Memories

    Pubblicato: 21/11/2021
  7. BI 119 Henry Yin: The Crisis in Neuroscience

    Pubblicato: 11/11/2021
  8. BI 118 Johannes Jäger: Beyond Networks

    Pubblicato: 01/11/2021
  9. BI 117 Anil Seth: Being You

    Pubblicato: 19/10/2021
  10. BI 116 Michael W. Cole: Empirical Neural Networks

    Pubblicato: 12/10/2021
  11. BI 115 Steve Grossberg: Conscious Mind, Resonant Brain

    Pubblicato: 02/10/2021
  12. BI 114 Mark Sprevak and Mazviita Chirimuuta: Computation and the Mind

    Pubblicato: 22/09/2021
  13. BI 113 David Barack and John Krakauer: Two Views On Cognition

    Pubblicato: 12/09/2021
  14. BI ViDA Panel Discussion: Deep RL and Dopamine

    Pubblicato: 02/09/2021
  15. BI 112 Ali Mohebi and Ben Engelhard: The Many Faces of Dopamine

    Pubblicato: 26/08/2021
  16. BI NMA 06: Advancing Neuro Deep Learning Panel

    Pubblicato: 19/08/2021
  17. BI NMA 05: NLP and Generative Models Panel

    Pubblicato: 13/08/2021
  18. BI NMA 04: Deep Learning Basics Panel

    Pubblicato: 06/08/2021
  19. BI 111 Kevin Mitchell and Erik Hoel: Agency, Emergence, Consciousness

    Pubblicato: 28/07/2021
  20. BI NMA 03: Stochastic Processes Panel

    Pubblicato: 22/07/2021

6 / 9

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.

Visit the podcast's native language site